Unit Plan + 3 Lesson Plans
EDCP 342A Unit planning: Rationale and
overview for planning a 3 to 4 week unit of work in secondary school
mathematics
Your name: Tiffany Qi (Yajun Qi)
School, grade & course: Sir Winston Churchill Secondary School, Grade 9, Mathematics
School, grade & course: Sir Winston Churchill Secondary School, Grade 9, Mathematics
Topic of unit (NOTE: This should be a unit you will actually
be teaching on practicum!):
Chapter 8 Probability and Statistics
Preplanning questions:
(1) Why do we teach this unit to secondary
school students? Research and talk about the following: Why is this topic
included in the curriculum? Why is it important that students learn it? What
learning do you hope they will take with them from this? What is
intrinsically interesting, useful, beautiful about this topic? (150 words)
Taylor mentioned that according to Bruner “If the
understanding of number, measure, and probability is judged crucial in the
pursuit of science, then instruction in these subjects should begin as intellectually
honestly and as early as possible in a manner consistent with the child's
forms of thought… If one respects the ways of thought of the growing child,
if one is courteous enough to translate material into his logical forms and
challenging enough to tempt him to advance, then it is possible to introduce
him at an early age to the ideas and styles that in later life make an
educated man.” (Taylor, 2011) As can be seen from these sentences, learning
probability and statistics topic could help students develop mathematical and
logical thinking. It will be beneficial for all the students even in the
future.
Moreover, according to BC new curriculum, students will
have chances to learn about population versus sample, bias, ethics, sampling
techniques, misleading stats, analyzing a given set of data (and/or its
representation) and identifying potential problems related to bias, use of
language, ethics, cost, time and timing, privacy, or cultural sensitivity and
using First Peoples data on water quality, Statistics Canada data on income,
health, housing, population. Students could use what they learnt from this
topic to analyze real-world problems and get chances to explore further in
mathematical way.
Work Cited
Taylor, F. M. (2011). Why teach probability in the
elementary classroom. Louisiana
Association of Teachers Mathematics Journal, 2(1).
|
(2) A mathematics
project connected to this unit: Plan and describe a student mathematics
project that will form part of this unit. Describe the topic, aims, process
and timing, and what the students will be asked to produce, and how you will
assess the project. (250 words)
Data Project
Description
Students could work individually or work in groups of 2or
3. The final assessment will be a 5-min
presentation. There are three options for students to complete this project.
Option 1:
Population VS Sample in Statistics
Students are expected to understand the basic concepts in
Section 8.1-8.2. Make a survey about any topic they feel interested in.
Collect some data and introduce the population, sample, sample methods,
bias/unbias for the corresponding topic. The final statement will be required
to present in their presentation. For
example, favorite TV program survey.
Option 2: Measure of Central Tendency and Graph
Students are expected to find some data from any topic
they feel interested in. Then they should apply what they learned from section
8.3-8.4 and analyze those data. Find mean, median, mode and graph the sample
data. The final statement will be required to present in their presentation.
For example, employee salaries list.
Option 3: Probability
Students are expected to find some data from any topic
they feel interested in. They need to provide all outcomes of a sample space,
number of outcomes of specific events, and the probability of these events.
They should choose at least 3 different events in one sample space to analyze
collecting data. The final statement will be required to present in their
presentation. For instance, the sum of rolling two dice.
Goal
Students should be able to apply the mathematical skills
they learned in this chapter. Find real world problems they are interested
in, analyze the collecting data, and provide their statements for the
corresponding topics.
Process and Timing
Students will have one week for this project. They could
collect data by doing research or doing survey or other methods. The final
assessment will be a 5-min presentation. Self-assessment and peer-assessment
will be required after presentation finish.
What the students will be asked to produce
Collecting data, results for corresponding options, final
statements, a 5-min presentation, self-assessment worksheet, peer-assessment
worksheet.
How you will assess the project
Evaluating the accuracy of students’ results and final
statements.
Observing presentation.
Collecting self-assessment and peer-assessment worksheet.
|
(3) Assessment and
evaluation: How will you build a fair and well-rounded
assessment and evaluation plan for this unit? Include formative and
summative, informal/ observational and more formal assessment modes. (100
words)
To build a fair and
comfortable learning environment for students, I am planning to apply
formative assessments into every class to help students improve themselves.
On the other hand, I will also give students some in-class exercises for them
to practice, for example textbook questions or in-class worksheets. After
chapter review class, there will be a unit test as well. All the questions in
this test can be solved by the methods which mentioned in previous lessons. The
following assessments will be used in this unit for teacher to assess and
evaluate students.
Formative Assessment: Entry/Exit
Slips, Discussion, “Kahoot!”, Peer/Self-Assessment, Presentation, Concept
Map, Data Project.
Summative Assessment: Pop
quiz, unit test. (Students could have one and only one chance to redo the
quizzes and test if they fail in first time. Both marks will be counted to
make sure it is fair.)
Informal Assessment: Four
Corners, Quick Write, in-class exercises
Observational Assessment:
Rubrics, direct observation, Peer/Self-Assessment, Checklists.
Formal Assessment: Homework,
quiz, test.
|
Elements of your unit plan:
a) Give a numbered list of the topics of the
10-12 lessons in this unit in the order you would teach them.
Lesson
|
Topic
|
1
|
8.1 Population
Versus Sample in Statistics
|
2
|
8.2 When to use a
Population or a Sample in Statistics
|
3
|
Analyze Social/Environmental
Justice Problems in Statistics
|
4
|
8.3 Measure of
Central Tendency in Statistics
|
5
|
8.4 Misleading
Graphs
|
6
|
Arts and
mathematics
|
7
|
8.5 Probability
Part I
|
8
|
8.6 Probability
Part II
|
9
|
Thinking Classroom
|
10
|
Presentation
|
11
|
8.7 Chapter Review
|
12
|
Unit Test
|
b) Write a detailed
lesson plan for three of the lessons
which will not be in a traditional
lecture/ exercise/ homework format. These
three lessons should include at least three of the following six elements
related to your mathematical topic. (And of course, you could include more than
three!)
These elements should be thoroughly integrated into the
lessons (i.e. not an add-on that the teacher just tells!)
a) history of this mathematics
b) social/environmental justice
c) Indigenous perspectives and cultures
d) Arts and mathematics
e) Open-ended problem solving in groups at vertical erasable
surfaces (“thinking classroom”)
f) Telling only what is arbitrary, and having students work
on what is logically ‘necessary’
Analyze
Social/Environmental Justice Problems in Statistics
Lesson
Plan
Subject: ___Mathematics_____
Grade: ___9______
|
Lesson Number: ___3____of _12______
Time: __70-80_____ minutes
Class Profile: 30 students
|
||
Big Idea: Students will understand
that...
Analyzing
the validity, reliability, and representation of data enables us to compare
and
interpret.
|
|||
Objectives: SWBATs [aim for a
maximum of 3 content, and relevant others specific to each category
-Students will be able to use some concepts
they learned from last two lessons to analyze collecting data
- Students will interact in groups
to go through real world problems together
- Students will be able to present
their findings for rest of the class
|
|||
Content:
What students will know.
-
Using First Peoples data on water quality, Statistics Canada data on
income, health, housing, population
-
Analyzing a given set of data (and/or its representation) and
identifying potential problems related to bias, use of language, ethics,
cost, time and timing, privacy, or cultural sensitivity
- Population versus sample, bias,
ethics, sampling techniques, misleading stats
|
Curricular
Competencies: What students be able to do.
- Use reasoning and logic to
explore, analyze, and apply mathematical ideas
- Develop, demonstrate, and apply
mathematical understanding through play, inquiry, and problem solving
- Use mathematical vocabulary and
language to contribute to mathematical discussions
- Connect mathematical concepts to
each other and to other areas and personal interests
|
||
Materials/equipment needed:
Laptop,
Internet, whiteboard, whiteboard markers, exit slips.
|
|||
Assessment/Evaluation of Students’
Learning:
Assessment:
Presentation, Exit Slips.
Evaluation: Direct Observation, collecting
exit slips, in-class discussion.
|
|||
Lesson Stages
|
What the teacher will be doing
|
What the students will be doing
|
Time
|
|
1
|
Warm-up
|
Show students two videos about
social and environmental justice to help them have a brief understanding
about this topic.
Social Justice
Environmental Justice
|
Watch these two videos.
Think about what is social
justice, what is environmental justice.
|
5-6 mins
|
2
|
Practice
|
Take students to school library.
Set up them into groups of 3 and
give one reading challenge.
|
To complete this challenge,
students should use the mathematical skills they learned in last two
lessons. Find and analyze some data as
evidences to support their corresponding example as one of
social/environmental justice problems.
|
20 -25 mins
|
3
|
Discussion
|
Discussion Time. Each group will present their examples and
evidences for rest of the class.
|
Each group will have 2-3 mins to
present their findings.
“Audiences” need to give feedback
to presenters and tell them if their examples are social/environmental
justice problems or not and why.
|
35-40 mins
|
4
|
Closure
|
Give
students Exit Slips.
Ask
them the following questions:
|
Answer these two questions on Exit
Slips.
Hand in Exit Slips in the end of
the class.
|
4-5 mins
|
Reflection
|
1.
Time management might be different for different
classes even they are all in the same grade.
2.
Students might have problems about how to do research
in school library or how to find effective data for their reading challenges.
Teacher should walk around and give
them some help if they need.
3.
Teacher should give back the exit slips in next class
with some comments.
|
Arts
and Mathematics
Lesson
Plan
Subject: ___Mathematics_____
Grade: ___9______
|
Lesson Number: ___6____of _12______
Time: __70-80_____ minutes
Class Profile: 30 students
|
||
Big Idea: Students will understand
that...
Analyzing
the validity, reliability, and representation of data enables us to compare
and interpret.
|
|||
Objectives: SWBATs [aim for a
maximum of 3 content, and relevant others specific to each category
-Students will be able to use some concepts
they learned from last two lessons to build their art project.
- Students will interact in groups
and work together.
- Students will be able to present
their characters’ stories for rest of the class
|
|||
Content:
What students will know.
-
Analyzing a given set of data (and/or its representation) and
identifying potential problems related to bias, use of language, ethics,
cost, time and timing, privacy, or cultural sensitivity
- Population versus sample, bias,
ethics, sampling techniques, misleading stats
|
Curricular
Competencies: What students be able to do.
- Use reasoning and logic to
explore, analyze, and apply mathematical ideas
- Develop, demonstrate, and apply
mathematical understanding through play, inquiry, and problem solving
- Use mathematical vocabulary and
language to contribute to mathematical discussions
- Connect mathematical concepts to
each other and to other areas and personal interests
|
||
Materials/equipment needed:
Color
pens/markers, some paper, Graphs, Kahoot, laptop, Internet.
|
|||
Assessment/Evaluation of Students’
Learning:
Assessment: Presentation, Kahoot!
Evaluation: Direct Observation,
collecting group art project, in-class discussion.
|
|||
Lesson Stages
|
What the teacher will be doing
|
What the students will be doing
|
Time
|
|
1
|
Warm-up
|
Using Kahoot! to go through the
review questions for section 8.3-8.4. Make sure in each group, there is at
least one electric device. Read aloud each question and may give some sample
hints or descriptions to help students follow the whole quiz.
|
Using the electric device to join
the Kahoot! game. By attending this online quiz, students have chances to
review some classic questions from section 8.3-8.4.
|
5-6 mins
|
2
|
Practice &
Presentation
|
Group Art Project: Ask students to
apply what they learned from section 8.3-8.4 to draw a character. Specific requirements:
The length of this character’s
name will be the mean value of the length of all group members’ names.
The height of this character will
be the median value of the height of all group members. (Draw a correct scale
for your characters to avoid misleading graph.)
The month of birth for this
character will be as same as the mode value of all group members.
Collect students’ art work in the
end of this class.
|
Students are expected to work in
groups of 5.
Everyone needs to provide three
numbers — length of their names (how
many letters in their names), height of them (the unit is cm), month of birth
(July represent 7).
Create a character for your group.
Present your character’s background
story for rest of the class. (Every group will have 5 mins.)
|
25-30 mins
30-35 mins
3-4 mins
|
Reflection
|
1.
Time management might be different for different
classes even they are all in the same grade.
2.
Make the description of this art project clear enough.
As a result, all the students know what they need to do for this project.
3.
If some students feel confused about pervious
concepts (mean, median, mode, misleading graph), teacher will give some help.
|
Thinking
Classroom
Lesson
Plan
Subject: ___Mathematics_____
Grade: ___9______
|
Lesson Number: ___9____of _12______
Time: __70-80_____ minutes
Class Profile: 30 students
|
||
Big Idea: Students will understand
that...
Analyzing
the validity, reliability, and representation of data enables us to compare
and interpret.
|
|||
Objectives: SWBATs [aim for a
maximum of 3 content, and relevant others specific to each category
- Students will be able to use some
concepts they learned from last two lessons to solve corresponding questions
- Students will interact in groups
to collect experimental data together
|
|||
Content:
What students will know.
-
Analyzing a given set of data (and/or its representation) and
identifying potential problems related to bias, use of language, ethics,
cost, time and timing, privacy, or cultural sensitivity
|
Curricular
Competencies: What students be able to do.
- Use reasoning and logic to
explore, analyze, and apply mathematical ideas
- Develop, demonstrate, and apply
mathematical understanding through play, inquiry, and problem solving
- Use mathematical vocabulary and
language to contribute to mathematical discussions
- Connect mathematical concepts to
each other and to other areas and personal interests
|
||
Materials/equipment needed:
Some
dice, whiteboard, whiteboard markers.
|
|||
Assessment/Evaluation of Students’
Learning:
Assessment:
Dice Game, Participation of Discussion
Evaluation:
Direct Observation, in-class exercises (experimental data and
theoretical answers), in-class
discussion.
|
|||
Lesson Stages
|
What the teacher will be doing
|
What the students will be doing
|
Time
|
|
1
|
Warm-up
|
Ask students to use two strategies
to solve the following questions:
1. Two dice are thrown. What is
the probability that the sum of two faces is equal to 7?
2. Two dice are thrown. What is
the probability that identical faces turn up on the two dice?
|
Work individually first and try
to find the correct answers.
Check your answers with neighbors.
Do you use the same methods? Do you
get the same answers?
|
5-7 mins
3-5 mins
|
2
|
Practice
|
Set up students into groups of 2
or 3. Provide two dice for each group. Let them try to throw dice by
themselves and ask them to check their answers with the actual outcomes.
Different or same?
Round 1:
The Maximum throwing number is
10.
Round 2:
The Maximum throwing number is 20.
Round 3:
The Maximum throwing number is 30.
|
Listen carefully and prepare to
play 3-round dice game.
Try to throw these dice 10 times and
take notes for the outcomes. Check outcomes with their answers. See if they are
different or not.
Try to throw these dice 10 more times
and take notes for the outcomes. Check outcomes with their answers. See if
they are different or not.
Try to throw these dice 10 more times
and take notes for the outcomes. Check outcomes with their answers. See if
they are different or not.
|
2-3 mins
8-10 mins
8-10 mins
8-10mins
|
3
|
Discussion
|
Ask each group to provide their experimental
data (10 times, 20 times, 30 times)
Discussion Time:
Why are those data all different/similar?
Is there any difference between experimental data and theoretical answers? If
yes, Why?
|
Write down experimental data on
whiteboard.
Discuss those questions in groups
of 3 or 4.
Discuss with teacher.
|
3-5 mins
10-15 mins
|
4
|
Closure
|
Give
a brief summary of this class. Ask students if they have any more questions.
Collecting
in-class exercises (experimental data and theoretical answers)
|
Take notes if they want.
Ask questions if they feel
confused about anything.
Hand in in-class exercises.
|
4-5 mins
1-2 mins
|
Reflection
|
1.
Time management might be different for different
classes even they are all in the same grade.
2.
Make the description of this dice game clear enough.
As a result, all the students know what they need to do next.
3. If
some students feel confused about pervious concepts, teacher will give some
help.
|
Google Doc link:
Unit Plan:
Thanks for this thoughtful unit plan outline, Tiffany.
ReplyDeleteRationale: Good!
Project: This looks very interesting and relevant to the curriculum. You might want to rethink giving so many open-ended options to Grade 8 students if they are going to accomplish the project in a week. Students may well need more help from you in choosing their topic and figuring out how they will collect data in the time given, so you might want to offer a list of suggested topics (with the possibility of their suggesting something not on the list).
You may also want to have students hand in a brief written report or poster that allows you to check the accuracy of their work. The self- and peer-assessment sheets are a great idea!
Assessment plan: Well-balanced and thoughtful!
Unit elements: Looks good. How will you incorporate arts and mathematics in this unit on statistics and probability? (It can be done, but I’m not clear how you intend to do it). Similarly, I’d be interested to hear how your ‘thinking classroom’ lesson will be integrated in the unit.
Lesson plans: #1: Using short videos to introduce these topics is a good idea, and these videos are not bad, but the first one is a bit generic, and the second takes a very American point of view. I would keep looking to see if you can find more focused videos that address Canadian or even BC examples.
The reading challenge in the library sounds great — but you need to specify exactly what this reading challenge will be! What will students be reading? How will data analysis dovetail with their reading about social/environmental justice issues? You may want to collaborate ahead of time with the school librarian to help you find the readings that will be appropriate. With Grade 8 students, I would suggest again that you have readings prepared, so that they can get down to work right away. Otherwise, the time may well be taken up with deciding how to start researching — and they might not actually get to any data analysis!
Generally a good lesson idea, but you do need to specify very clearly what the reading challenge will entail!
#2: What a great lesson idea! I love the way you have integrated an understanding of mean, median and mode with a practical measurement and calculation task among the members of the group, and then an imaginative/ artistic representation of a character with these ‘central tendency’ characteristics.
Again, you might want to have each group do a brief write-up along with their character drawing, explaining what measurements or data they collected from their group and how they calculated the mean, median and mode. They should present this along with their character’s story, and then you can display their artwork and data collection/ calculations in the classroom.
#3: Good! This is a nice interactive activity that helps students understand the difference between experimental and theoretical probability. Make sure that you are very clear about the question(s) they are trying to answer (is it all about throwing doubles, or are there other questions you will be asking — like the probability of throwing particular sums?) I would also give a little bit more time to the summary than you have allotted, to make sure that students truly understand the point of all this dice-throwing and diagramming of probabilities!
Overall: This looks like a very interesting and varied unit that integrates many important themes while teaching the big concepts and techniques of the curricular unit. Good work!